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ABSTRACT 
This paper presents a modeling methodology used to predict the performance of a flexible structure, such as a space tele- 
scope, in the presence of an on-board vibrational dsturbance source, such as a reaction wheel assembly (RWA). Both 
decoupled and coupled analysis methods are presented. The decoupled method relies on blocked RWA disturbances, 
measured with the RWA hardmounted to a rigid surface. The coupled method corrects the blocked RWA disturbance 
boundary conditions using “force filters,” which depend on estimates of the interface accelerances of the RWA and space- 
craft. Both methods were validated on the Micro-Precision Interferometer testbed at the Jet Propulsion Laboratory. 
Experimental results are encouraging, indicating that both methods provide sufficient accuracy compared to measured 
values; however, the coupled method provides the best results when the gyroscopic nature of the spinning RWA is cap- 
tured in the RWA accelerance model. Additionally, the RWA disturbance cross spectral density terms are found to be 
influential. 
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NOMENCLATURE 

CSD Cross Spectral Density [N2/Hz] FRF Frequency Response Function RMS Root Mean Square 
DAQ Data Acquisition System MPI Micro-Precision Interferometer RPM Revolutions Per Minute 
DOF Degree(s) of Freedom OPD Optical Pathlength Difference R WA Reaction Wheel Assembly 
FEM Finite Element Model PSD Power Spectral Density [N*/Hz] SZM Space Interferometry Mission 

1. INTRODUCTION 
NASA’s future Space Interferometry Mission (SIM), depicted in Fig. 1, will be the first space-based optical interferome- 
ter. With optics mounted to its flexible truss structure, SIM must achieve nanometer-level stability requirements in the 
presence of on-board disturbances. The primary disturbance source anticipated for SIM is the reaction wheel assembly 
(RWA), a spinning flywheel assembly used for attitude control. In order to ensure mission success, a disturbance analysis 
method must be developed to predict SIM’s on-orbit performance in the presence of RWA disturbances. 

Fig. 1 : NASA’s future Space Inter- Fig. 2: The Micro-Precision Interferometer Fig. 3. R3A on the MPI base plate. 
ferometry Mission. (MPI) testbed at the Jet Propulsion Laboratory. 
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RWA disturbances are typically measured in a “blocked” or “infinite-impedance” Configuration, in which the RWA is 
hardmounted to a rigid surface and its interface is constrained to have zero motion. The RWA is spun, and a load trans- 
ducer is used to measure the resulting disturbance loads at the interface. While this method provides consistent and 
repeatable boundary conditions, they are not an accurate representation of the coupled boundary conditions that occur 
when the RWA is mounted to a structure. In other words, the blocked RWA disturbances differ from the coupled distur- 
bances that would actually exist at the spacecraft-RWA interface if the two bodies were coupled together. 

This paper presents both a decoupled and a coupled disturbance analysis method used to predict the dynamic performance 
of a flexible structure, such as a space telescope, in the presence of on-board RWA vibrational disturbances. In the decou- 
pled method, the blocked RWA disturbances are propagated through a spacecraft frequency response h c t i o n  (FRF) to 
predict the resulting spacecraft performance. In the coupled method, “force filters” are used to correct the blocked distur- 
bances for the artificial boundary conditions imposed on the RWA during testing. The filters, which rely on estimates of 
the RWA and spacecraft interface accelerances, are used to “transform” the blocked RWA disturbances into the corre- 
sponding coupled disturbances. The coupled disturbances are then propagated, in place of the blocked disturbances, 
through a spacecraft FRF to predxt the coupled performance. Both the decoupled and coupled analysis methods are vali- 
dated by experimental data from the Micro-Precision Interferometer (MPI) testbed at the Jet Propulsion Laboratory. 

1.1 The Micro-Precision Interferometer testbed 
The MPI testbed, shown in its suspended configuration in Fig. 2, is a scale model of SIM. Like a space-based interferom- 
eter, MPI is a lightweight, flexible truss structure with mission-critical dynamics. Active optics, located on the left arm of 
the x 7 x 6.5 meter boom assembly, are used to measure MPI’s performance in the presence of vibrational disturbances 
induced at the base of the three booms by an on-board RWA.’ In this study, the performance metric of interest is the opti- 
cal pathlength difference (OPD) between the two paths of the optical interferometer, usually expressed in nanometers.* 

Since the RWA is anticipated to be the largest disturbance source on SIM, the MPI disturbance analysis focuses on the dis- 
turbance path from the RWA vibrational inputs to the OPD. The RWA, shown hardmounted directly to the MPI base plate 
in Fig. 3, is similar to the one used for attitude control on the Magellan spacecraft. Although it is sometimes mounted on 
an isolator for research purposes, this paper focuses on the hardmounted configuration. 

While the RWA is used to induce coupled, tonal disturbances characteristic of those expected on SIM, voice coil shakers, 
shown in Fig. 4, are alternatively used to induce “pure,” decoupled, white-noise forces and moments. These decoupled 
disturbances are useful for measuring the FRFs from the six loads (three forces and three moments) at the RWA mounting 
location to the OPD. 

Fig. 4: Voice coil shakers on the MPI base. Fig. 5: MPI FRF: n-force-to-OPD. 

1.2 The decoupled disturbance analysis method 
The “traditional” or “decoupled” disturbance analysis method is based on a simple frequency-domain input-output princi- 
ple. The MPI OPD is predicted for each wheel speed, Q as 

Z(W 0) = GZF(a)F(u,  Q) (1) 

Another metric for MPI is front-end pointing, expressed in milli-arcseconds and measured by a “position sensitive device.” 



where o represents frequency (in units of radians per second), Z is the p x 1 predictedperformance vector (in this case, 
the scalar OPD), F is an n x 1 disturbance load vector (in this case, the 6 x 1 vector of measured RWA disturbance forces 
and moments), p is the number of performance metrics, and n is the dimension of the disturbance load vector. G, is the 
p x n FRF of the structure (in this case, the 1 x 6 FRF relating disturbance loads at the RWA-mounting location on MPI 
to the OPD). The first component of GzF, the x-force-to-OPD FRF, is shown in Fig. 5. 

Taking the expectation of the “square” of (1) allows us to write the analysis equation in terms of spectral density matrices: 

@zz(o, Q) = GZF(W)@FF(O, Q ) G Z ( o )  (2) 

where QZz is the predicted performance spectral density matrix (in this case, the scalar OPD power spectral density), OFF 
is the RWA disturbance spectral density matrix (in this case, the 6 x 6 matrix with disturbance power spectra on the diag- 
onal and cross-spectra off the diagonal), and [ e ]  

From (2), we calculate the root mean square (RMS), a,, of the performance, Z, for each wheel speed, 0. 

denotes a complex-conjugate transpose operation. 

When Z is a vector containing more than one performance metric, a, is a matrix whose diagonal components are the scalar 
RMS functions of the performances. When Z is a single performance (such as OPD), a, is its scalar RMS function. 

An assumption is sometimes made that the diagonal terms of 0, or power spectral densities (PSDs), dominate the off- 
diagonal terms, or cross spectral densities (CSDs): 

@F,F, ’) J@F,F,I 9 i * j  . (4) 

When this holds true, QFF is approximated as a diagonal matrix, and Equation (2) reduces from a hlly populated matrix 
equation to a simple summation of diagonal terms: 

6 

@‘zz(w Q) = @’F,F,(oI Q)lGz’F,(w)12 . (5) 
j =  1 

For each wheel speed, Q the OPD spectrum, On, is approximated using (5), and its RMS is calculated using (3). To val- 
idate these predictions, the true OPD of the coupled MPI-RWA system is measured for each wheel speed with the RWA 
mounted on MPI. Fig. 6 shows the predicted and measured OPD RMS, both as hc t ions  of wheel speed. 
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Fig. 6: Measured versus predicted OPD using blocked Fig. 7: Measured versus predicted OPD using coupled 

RWA disturbances. RWA disturbances. 

1.3 Motivation for a “coupled” disturbance analysis method 
The work documented in the remainder of this paper is motivated by the fact that the decoupled MPI performance predic- 
tions consistently overbound the measurements. This discrepancy has been, up to now, attributed to the decoupled nature 



of the disturbance analysis method in (5). In propagating blocked RWA disturbances through an MPI FRF, this method 
neglects the structural dynamic coupling between the MPI and R WA. Our goal is thus to correct the mismatch in RWA 
disturbance-testing boundary conditions by applying a coupling theory to the performance predictions on MPI. 
Reconciling the measured and predicted performances will affirm our ability to predict a spacecraft’s on-orbit 
dynamic behavior prior to flight. 
Previous MPI predictions have overbounded measurements by up to a factor of four, significantly more than shown in 
Fig. 6. Recent hardware modification have stiffened the MPI-RWA interface, both decreasing the amount of overpredic- 
tion and confining it to the range of wheel speeds between 2700 and 3700 revolutions per minute (RPM). This confirms 
that dynamic coupling may be the critical aspect neglected by the decoupled method, since stiffening the interface effec- 
tively decreased the dynamic coupling between the two bodies and improved the prediction. Another indication that cou- 
pling is a concern is the fact that the OPD predicted using coupled disturbances, measured with the RWA mounted to MPI, 
in place of blocked disturbances yields much better results. Fig. 7 shows that using the coupled disturbances eliminates 
the overprediction at 2700-3200 and 3400-3500 RPM. 

However, since there are still local regions in Fig. 7 (such as 3200-3400 and 3500-3700 RPM) where the analysis overpre- 
dicts the measurement, we consider other potential error sources. Aside fiom neglecting coupling, the disturbance analy- 
sis method in (5) makes other mathematical and physical approximations, such as neglecting the off-diagonal disturbance 
CSD terms in (2). Additionally, ( 5 )  fails to account for the gyroscopic stiffening effects of the spinning RWA. These fac- 
tors will be discussed in Secs. 4 and 3.4 of this paper, respectively. 

2. FORCE FILTER COUPLING METHOD 

2.1 The force filter 
In order to correct the mismatch of boundary conditions that occurs in blocked RWA disturbance testing, the following 
“force filter” relationship between the measured RWA blocked forces and the “true” coupled forces may be used2? 

WA,ii(O) 

where i = 1,2 ,3  refers to the x ,  y, and z axes, respectively, o represents frequency in radians per second, GJ ii  is a 
“force filter” along the i* axis, Fc,j is the Fourier transform of the coupled interface force along the i* axis, Fb,i is the Fou- 
rier transform of the measured blocked force along the i* axis, AMpLii is the MPI driving-point accelerance along the i~ 
axis, and ARWA,ii is the RWA driving-point accelerance along the ith axis.* 

Similarly, a “moment filter” can be written as 

WA,ii(O) 

where i = 4,5 ,6  refers to rotations about the x ,  y, and z axes, respectively, is the Fourier transform of the coupled 
interface moment along the i~ axis, Mb,i is the Fourier transform of the measured blocked moment along the i~ axis, A,,,, 
is the MPI driving-point rotational accelerance about the ith axis, and ARwA,ii is the RWA driving-point rotational acceler- 
ance about the i~ axis. 

Table 1 lists the generalized input-output relationships between a load, F, imparted on a body and its resulting position, 
velocity, and acceleration: Q , Q , and Q , respectively4 (Where there is more than one acceptable term, the more com- 
mon term is shown in bold.) From this table, it is clear that accelerance, A ,  is simply a derivative of mobility, F5 

The driving-point accelerance is a complex, frequency-dependent ratio of co-located acceleration and force at the interface, or “driv- 
ing point” of a body. It is the inverse of the driving-point apparent mass. For more information, see reference 4. 
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and thus that the ratio of two bodies’ accelerances is equivalent to the ratio of their mobilities: 

(9) 
-- ’MP1,ii - j ” Y M p 1 , i i  - -- YMPI, i i  

’RWA,ii  joyRE‘,4,ii ‘RWA,ii ‘ 

Hence the filters in (6 )  and (7) can be formed using the ratio of MF’I and RWA accelerances or mobilities: 

1 

ARWA,i 
I 

I I 

2.2 The coupled disturbance analysis method 
Recall from Equation (1) the input-output relationship used as the basis of the decoupled disturbance analysis method, 
where blocked disturbances are substituted for the actual interface forces, F(o), applied to a spacecraft. Recall also the 
assumption that the disturbance PSDs dominate the CSDs, allowing us to approximate Equation (2) as (5).  If we take the 
product of the blocked disturbances in (1) and the force and moment filters in (10) and (1 l), respectively, we effectively 
“filter” the blocked disturbances to yield the coupled hsturbances. We can then rewrite the decoupled equation, (5 ) ,  as a 
coupled analysis equation: 

The Q ~ , ~ , ( w ,  n)lCA,,(w)(2 terms represent the filtered or coupled disturbance PSDs. Using the coupled equation, (12), in 
place of the decoupled equation, (5) ,  effectively corrects the mismatch of boundary conditions introduced by the blocked 
RWA disturbance testing. When force filters are available but moment filters are not (due to the difficulty in measuring 
rotational accelerances), (12) can be approximated by 

3 6 

Q.A~,  0) = c @F,F, (o ,  n)IT;,ii(o)I2lC,F,(o)l2 + o F , F , ( o ,  ~ ) l ~ z F , ( w ) l ~  (13) 
j =  I j =  4 

where the moment filters have been set to unity, so that forces are filtered but moments are not. 
Finally, we note an approximation inherent in (12). (12) was derived by directly “filtering” the blocked disturbance PSDs 
in (5) ,  without considering the approximation made between (2) and (5).  If, instead, we filter the original relation, (2), we 



find a matrix equation analogous to (12) that contains not only the off-diagonal CSDs, a,;,, for i # j , but also off-diago- 
nal terms in G), a filly populated force filter matrix formed from 6 x 6 RWA and MPI acceferance matrices. 

The fully populated forcefilter matrix, analogous to the scalar force and moment filters in (10) and (1 l), respectively, is 

Gk O )  = [ I  + ( o)A.&fp[( O )  I-’ 9 (14) 

where I is the 6 x 6 identity matrix, and A,, and AMPI are the 6 x 6 RWA and MPI accelerance matrices, respectively. 
Note that even using only the diagonal terms, Gx ii  , in (14) is not equivalent to GJ i i  in (lo), since (14) requires a matrix 
inversion of the fully-populated A,, matrix. In other words, the diagonals of A;’,,A,, in (14) are not the same as the 
scalar terms AMpI, i i /ARwA, i i  in (10). Hence GLii denotes an approximation of the diagonals, Gx i i ,  of Gf. 
The fully populated, coupled matrix analysis equation, analogous to the scalar equation, (12), is 

aZzm Q) = ~ ~ ~ ( w p w ~ ~ ( ~  Q)G;~(wG&). (15) 

For a complete derivation of these matrix equations, see reference 6. While a matrix analysis using (14) and (1 5) is 
planned for MPI in the future, the work in the following section is based on the scalar analysis equations, (lo)-( 13). 

3. DISTURBANCE ANALYSIS VALIDATION 

3.1 Initial coupled analysis 
In order to test the coupled analysis theory, Equations (10) and (13) were implemented on MPI.7 The RWA is approxi- 
mated as a rigid body with the equation of motion along each translational axis ( i  = 1,2, 3): 

A.(t> = mRwA4i(t> Y (16) 

whereA is the force acting on the RWA along its i* axis, mRwA is the RWA mass, and qi is the RWA acceleration along 
the i* axis. Taking the Fourier Transform of (1 6), 

F j ( 0 )  = mRwAi)i(m> 9 (17) 

so that the RWA translational accelerances along the x,y , and z axes are 

Substituting the RWA accelerances into Equation (10) yields the force filter for i = 1,2,  3 :  

Fc,i - 1 - -  
Fb, i -I- mRWAAh4PI,ii ’ 

The RWA translational accelerances, based on Equation (18) and the measured RWA mass (8.885 kg), are shown in Fig. 8. 
Since they are frequency-independent, they have constant magnitudes equal to the inverse of the RWA mass. 

The MPI translational accelerances, for i = 1,2 ,3  , were measured via tap tests. A Kistler Model 9728A20000 
impulse hammer with a ‘‘soft” tip was used to tap MPI at the RWA mounting location in each of the three translational 
directions, and a Kistler Model 8628B5 accelerometer was used to measure the resulting accelerations. A Hewlett Pack- 
ard 3566A data acquisition system (DAQ) was used to record and process the force and acceleration time histones. For 
each direction, five taps were performed, and the HP DAQ computed and averaged the resulting force-to-acceleration 
FRFs. The sampling rate was set at a maximum possible 12.6 kHz in order to capture the MPI dynamics during a very 
short (-0.01 second) impulse window. The resulting MPI translational accelerances are shown in Fig. 9. 

The RWA mass and MF’I translational accelerances are substituted into Equation (19) to yield the three translational force 
filters shown in Fig. 10. Because the filters are defined as ratios of coupled to blocked disturbances, their magnitudes are 
less than unity where the blocked loads overpredict the coupled ones, and greater than unity where the blocked loads 
underpredict the coupled ones. These filters, called the “rigid-RWA, tap-MPI” filters since they are based on rigid-body 
RWA accelerances and tap-test MPI accelerances, are now used to perform a disturbance analysis for MPI. This analysis 
is coupled in the translational degrees of freedom (DOF) only; in other words, Equation (1 3) is used to approximate (12), 
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Fig. 8: RWA rigid-body-model translational accelerances. 
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Fig. 10: Translational “rigid-RWA, tap-MPI” force filters. Fig. 11 : Measured versus predicted OPD using blocked 
RWA disturbances and “rigid-RWA, tap-MPI” filters. 

since the forces are filtered but the moments are not. The resulting coupled prediction is shown in Fig. 11, along with the 
decoupled prediction from Sec. 1.2 and the measured OPD. 
The preliminary results in Fig. 11 are discouraging. The coupled and decoupled predictions are quite similar, both over- 
predicting the measured OPD in the 2700-3700 RPM range (where coupling was found to be of concem in Sec. 1.3). 
Thus the implementation of Equations (10) and (1 3) does not capture the coupling of the system. 

We consider several reasons why this coupling method does not improve the decoupled analysis. First, we address con- 
cem about the quality of the MPI tap-test accelerance measurements. The accelerances in Fig. 9 are noisy, and because of 
the limited data-capture time window, limited data acquisition bandwidth, and poor signal coherence associated with 
impulsive tap tests, the MPI accelerance data are not of sufficient quality. Further, with a -0.01 second impulse window, 
we cannot capture the sub-100 Hz dynamics of MPI. However, Fig. 5 shows that MPI is modally rich below 100 Hz. 

Second, Equation (19) was used to filter the three forces, but the moment filters were neglected. This initial analysis was 
performed because there was no prior knowledge of the MPI rotational accelerances, and also because it was believed that 
the disturbance moments had a secondary contribution to the overall performance when compared with the forces. 
Third, as described in Sec. 2.2, Equation (10) is only an exact relation for a single-DOF system, since it describes a ratio 
of coupled-to-blocked disturbances along a single axis. Although it can be applied sequentially to disturbance forces 
along the x, y,  and z axes (and (1 1) can be applied to moments about the x,y , and z axes), it neglects coupling between the 
axes. Hence for most multi-DOF systems, it is only an approximation to matrix relation in (14). Similarly, Equations (12) 
and (13) are only approximations for the matrix relation in (15), since they neglect RWA disturbance CSDs. 



Finally, the coupled analysis method neglects the gyroscopic effects caused by spinning bodies, such as the RWA fly- 
wheel. The remainder of this paper describes steps taken to reconcile the coupled predictions with the measured OPD by: 

obtaining more reliable MPI accelerance data 
using moment filters, in addition to force filters 

accounting for RWA gyroscopic effects 
including RWA disturbance CSDs, as well as PSDs. 

3.2 Model-based accelerances 

3.2.1 MPI model-based accelerance 
Because the adhtion of the MPI accelerances via the force filter in Equation (19) did not reconcile the predicted and mea- 
sured OPD values, potential error sources must be investigated. First, we address concern about the quality of the MPI 
tap-test accelerance data in Fig. 2.2. In order to eliminate error associated with the tap tests, we instead use a finite ele- 
ment model (FEM) of MPI to generate the desired accelerance data. An existing Integrated Modeling of Optical Systems 
(IMOS) model of MPI was used to generate the x, y, and z translational accelerances shown in Fig. 12. As expected, sig- 
nificant dynamics not captured in the tap tests lie below 100 Hz. Further, the magnitudes of the FEM-generated acceler- 
ances prove more accurate than the tap-test magnitudes. Treating the MPI as a rigid body at low frequency, we expect its 
accelerance to tend toward the inverse of its mass. Since the MPI mass is -500 kg, its low-frequency accelerance should 
tend toward 2.10” kg-’. The FEM-based accelerances are consistent with this, particularly the x-axis translational 
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Fig. 12: MPI FEM-predicted translational accelerances. 
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Fig. 13: Translational “rigid-RWA, model3-MPI” force filters. 

The resulting force filters, based on the rigid-body-model RWA accelerance and the FEM-generated MPI accelerance, are 
shown in Fig. 13. They are referred to as “rigid-RWA, model3-MPI” filters. (The “3” in the filter name refers to the fact 
that we are still filtering the three forces, but not the moments.) Fig. 14 shows the resulting coupled OPD prediction, 
compared to both the decoupled prediction from Sec. 1 and the measured OPD. The decoupled and coupled predictions 
appear similar, and the coupled analysis is nearly identical to the “rigid-RWA, tap-MPI” analysis in Sec. 3.1, with very 
modest improvements. Hence, despite the improved quality in the MPI accelerances, these force filters do not signifi- 
cantly improve the OPD prediction, and the MPI accelerance data quality is probably not the primary factor contributing 
to the mismatch between prediction and measurement.* 

3.2.2 MPI and RWA model-based rotational accelerances 
Since the translational force filters do not improve the coupled OPD prediction, we now consider the rotational “moment” 
filters. Recall from Equation (1 1) that moment filters are formed from the ratio of RWA-to-MPI rotational accelerances. 
The RWA rotational accelerances can be generated from a rigid-body model, just as the RWA translational accelerances 

* A study was also performed in which the three RWA translational accelerances were measured via tap tests. The resulting predictions 
provided no improvement over those in Fig. 14, confirming that the RWA flexibility is not influential in this analysis. 
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Fig. 15: Shapes used to estimate the Magellan RWA’s mass 
moments of inertia: (a) cylinder and @) cone. 

are. The MPI rotational accelerances can be generated from the MPI FEM, just as the MPI translational accelerances are. 
Hence the rotational accelerances of both bodies can be derived from models.* 
The RWA is treated as a rigid body with the rotational equation of motion about each axis ( i  = 4 ,  5 ,  6 ) :  

mi ( t )  = I~wA,iiei(f) 9 (20) 

where mi is the moment acting on the RWA about its ith axis, I,,,, 
and 6i is the RWA angular acceleration about its i* axis. Taking the Fourier Transform of (20), 

is the RWA mass moment of inertia about its i* axis, 

Mi(0> = zRWA,ii@i(m) > 

so that the RWA rotational accelerances about the x,  y, and z axes are 

, i = 4 , 5 , 6  
- @i - 1 

ARWA,ii - - - - Mi IR WA, ii 

Thus in order to calculate the RWA’s driving-point rotational accelerances using (22), we must determine its moments of 
inertia, I, wA, ii, about principal coordinate axes originating at the RWA-MPI interface point. Since inertia information is 
not available from the RWA manufacturer, the inertias are estimated from a constant-mass-density model. 

From Fig. 3, we see the Magellan RWA lies somewhere between a cylindrical and conical shape. We can thus estimate 
the RWA inertia by averaging the inertias of a cylinder and a cone with similar mass and dimensions to the RWA. For the 
cylinder in Fig. 15(a), the moments of inertia are about the origin are 

1 
12 Ixx = -m(3r2  + h2)  

1 2  I,, = -mr  
2 

and for the cone in Fig. 15(b), 

* It is possible to meustire the RWA and MPI rotational accelerances, but this generally requires a much more sophisticated test config- 
uration and measurement techniques than tap tests allow, as demonstrated in reference 6. 
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Substituting the RWA mass and dimensions into (23) and (24) and averaging the cylindrical and conical values, we obtain 
the RWA inertia estimates listed in Table 2. Although these values are approximate, any influence they might have will 
motivate the measurement of more accurate values or the direct measurement of the RWA rotational accelerances. 

TABLE 2: Estimated mass moments of inertia [kg*m2] for the Magellan RWA. 

I ‘RW.4.44. ‘RWA.55 I 0.0812 I 

The RWA rotational accelerances, based on Equation (22) and the inertias in Table 2, are shown in Fig. 16. Since they are 
frequency-independent, they appear as constant lines, with magnitudes equal to the inverse of the RWA inertias. The MPI 
rotational accelerances, generated using the MPI FEM, are shown in Fig. 17. The resulting moment filters, based on the 
rigid-body-model RWA accelerance and FEM-generated MPI accelerance, are shown in Fig. 18, and are referred to as 
“rigid-RWA, model6-MPI” filters. (The “6” in the filter name refers to the fact that we are filtering all six DOF 
moments, as well as forces.) 
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Fig. 16: RWA rigid-body-model rotational accelerances. Fig. 17: MPI FEM-predicted rotational accelerances. 

Fig. 19 shows the resulting coupled OPD prediction, using both the “rigid-RWA, model3-MPI” force filters and the “rigid- 
RWA, model6-MPI” moment filters. This prediction is compared to both the decoupled prediction from Sec. 1.2 and the 
measured OPD. The predictions due to the three-DOF and six-DOF filters in Figures 14 and 19, respectively, appear vir- 
tually indistinguishable, indicating that the use of momentfilters does not reconcile the predicted and measured OPD. 

3.3 Empirical force and moment filters 

3.3.1 Motivation for empirical filters 
The filters used so far have failed to improve upon the decoupled OPD prediction, as demonstrated by Figures 11, 14, and 
19. Hence they must not actually transform the blocked disturbances into their coupled equivalents, and therefore must be 
incorrect. We now investigate “empirical filters,” which are formed from measured disturbances by taking the ratio of 
coupled disturbance spectra (measured with the RWA mounted on MPI) to blocked spectra. This ratio will provide an 
estimate of how the analytical filters should look. 
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Fig. 18: Rotational “rigid-RWA, model6-MPI” 
moment filters. 

Fig. 19: Measured versus predicted OPD using blocked RWA dis- 
turbances and “rigid-RWA, model6-MPYforce and moment filters. 

3.3.2 Empirical filter data 
We form the three force and three moment empirical filters by dividing the coupled and blocked disturbance spectra. 
Since each spectrum, QFiFi(w, a )  for i = 1,2, ..., 6 ,  is a function of frequency (a) and wheel spin rate (Q), the resulting 
empirical filters are also frequency- and wheel-speed-dependent. The empirical F, filter is shown in Fig. 20(a), and the 
M, filter is shown in 20(b). Each filter is plotted as a function of frequency (x-axis) and wheel speed (y-axis), with its 
magnitude (in decibels) indicated by the neighboring color scale. The color-scale limits have been truncated to improve 
the signal-to-noise ratio; in other words, a few very large peaks have magnitudes “off” the scale and would eclipse the 
remaining data if the scale were normalized to the maximum values. 
Large discrepancies exist between these empirical filters and the analytical filters in Sections 3.1 and 3.2. The empirical 
filters are highly dependent on wheel speed, while the “analytical” filters in Figs. 10, 13, and 18 depend only on fre- 
quency. Thus the analytical filters neglect some wheel-speed-dependent physics. Further, the empirical and analytical fil- 
ters are quantitatively different. The empirical filter in Fig. 20(a), for example, has peak values over two orders of 
magnitude larger than its analytical equivalents in Figures 10 and 13. Similarly, the empirical filter in 20(b) has peak val- 
ues over an order of magnitude larger than its analytical equivalent in Fig. 18. 

While the qualitative difference between the empirical and analytical filters (namely, the wheel-speed-dependence of the 
empirical filters) is a factor we can investigate, the quantitative difference is more elusive because the empirical magni- 
tudes are not entirely trustworthy. Since a blocked spectrum plotted in the frequency-versus-wheel-speed plane is mostly 
noise, with localized regions of signal due to tonal disturbances and structural modes of the RWA, an empirical filter is 
essentially the division of a coupled spectrum by noise in all but the localized signal regions. Hence the general trend of 
the empiricalPlters is correct, but the peak values are inaccurate. 

Fig. 20: Empirical filters: (a) F, empirical force filter, (b) M, empirical moment filter. Fig. 2 1 : Rigid flywheel model. 



It would be useful to improve the numerical accuracy of the empirical filters in the future, but for now, we confirm their 
general correctness by using them in a coupled disturbance analysis. Since the empirical filters are the true ratios of cou- 
pled-to-blocked disturbance spectra, filtering the blocked spectra should return the coupled spectra, and the resulting fil- 
tered prediction should be identical to an unfiltered prediction using the coupled spectra. Previous analyses have 
demonstrated this, so despite concerns about the peak magnitudes, we know the empirical filters are somewhat correct.’ 

3.4 Addition of RWA gyroscopic terms 
We have found the unexpected result that the empirical filters depend highly on the wheel’s spin rate. However, the ana- 
lytical filters in Sections 3.  l and 3.2, formed using Equations (IO) and (1 l), are independent of wheel speed as long as the 
MPI and RWA accelerances are independent of wheel speed. Clearly the MPI accelerance is independent of wheel speed, 
yet this is not true for the RWA accelerance, which is influenced by gyroscopic effects. An attempt is now made to 
account for “gyroscopic stiffening’’ effects in the RWA accelerance models. 

Consider the symmetric, rigid, spinning flywheel in Fig. 2 1. Its rotational equations of motion about the radial axes are:2 

where I, is the mass moment of inertia about the radial axes, Izz is the mass moment of inertia about the spin axis, is the 
flywheel’s spin rate, 0, and ey are the angular rotations about the x and y axes, respectively, and m, and my are external 
moments applied about the x andy axes, respectively. Notice the skew-symmetric damping matrix with two off-diagonal, 
wheel-speed-dependent terms: SU, and -sU,,. These are the gyroscopic terms of interest. 
Taking the Fourier Transform of (25), using (8) to write velocities in terms of accelerations, and collecting terms, 

r 

Equation (26) can now be solved to yield the flywheel’s rotational accelerations in terms of the moments: 

so that the coupled rotational accelerance of the wheel about its x- and y-axes is: 

1 Irr 

We would like to substitute .this accelerance in place of the expression in (22) (for i = 4,5 ), which does not include gyro- 
scopic effects. However, like all the accelerances used so far in this study, the accelerances in (22) are decoupled between 
the axes. Accordingly, all the MatlabTM code developed to implement the filters is based on (10) and (1 l), rather than on 
(14), and considerable effort is required to modify the code to include off-diagonal accelerance terms in the filters. Hence 
we approximate the RWA accelerance in (28) as having only its diagonal terms. We recognize that gyroscopic efects are 
highly coupled between the axes and that the ofl-diagonal accelerance terms may be quite injluential; a full investigation 



of these terms is planned in the future. For now, we recognize that these diagonal terms are still an improvement over the 
R WA rotational accelerances in (22), since they now depend on RWA wheel-speed. 

From Equations (27) and (28), if only M, is applied, the rotational accelerance about the x-axis is: 

Irr ox = M x  - (Irrf-(%) 2 ’  

I l 

and i f  only My is applied, the rotational accelerance about the y-axis is: 

These “gyroscopic” rotational accelerances depend on both frequency and wheel speed, as expected. When the wheel is 
at rest (0 =O), it is easily shown that (29) and (30) reduce to (22) (for i = 4, 5 ), the RWA rotational accelerances without 
gyroscopic effects. 

(29) and (30) are now substituted into (1 l), along with the MPI FEM-generated rotational accelerances, to yield the “rigid- 
gyro-RWA, model6-MPI” moment filters that include gyroscopic effects and depend on both frequency and wheel speed 
but neglect off-axis terms. The resulting moment filters are shown in Fig. 22. Although they now depend on wheel speed, 
their peak magnitudes are still much smaller than the empirical filters in Sec. 3.3. Also, their dependence on wheel speed 
appears qualitatively different from the empirical filters. The gyroscopic filters increase roughly as wheel speed squared, 
and this wheel-speed dependence appears only at low frequencies (under 20 Hz); however, the empirical moment filter in 
Fig. 20 has a non-deterministic dependence on wheel speed, and this dependence occurs over a broad frequency range (0- 
150 Hz). 
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Fig. 22: “Rigid-gyro-RWA, model6-MPI” moment filters: (a) M, filter and (b) My filter. 

Despite these discrepancies, the analysis performed with the gyroscopic filters does improve the coupled OPD prediction. 
Fig. 23, shows the coupled prediction using both the “rigid-RWA, model3-MP1”force filters and the “rigid-gyro-RWA, 
model6-MPI” moment filters. This coupled prediction is compared to both the decoupled prediction from Sec. 1.2 and the 
measured OPD. The gyroscopic filters improve upon the decoupled prediction significantly between 3050 and 3200 
RPM, as well as near 3400 and 3500 RPM. Hence the gyroscopic moment filters improve the coupled analysis 
method more than any other filters so far. 
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Fig. 23: Measured versus predicted hardmounted OPD 
response using blocked RWA disturbances and the “rigid- 

gyro-RWA, model6-MPI”force and moment filters. 

Fig. 24: Measured versus predicted hardmounted OPD 
response using blocked RWA disturbance PSDs and CSDs 

(without force and moment filters). 

4. ADDITION OF CROSS-SPECTRAL-DENSITY (CSD) DISTURBANCE TERMS 
One final approximation in the coupled analysis method is now investigated. Recall the simplification from the coupled 
matrix equations, (14) and (15), to the scalar equations, (10)-(12). The latter equations neglect two types of off-diagonal 
terms: 

the off-diagonal terms in the RWA and MPI accelerance matrices and 
the off-diagonal terms in the RWA disturbance spectral density matrix (the CSDs). 

Accounting for the first set of terms would be difficult, since measuring a body’s 6 x 6 accelerance matrix is not trivial 
and may require considerable resources. Even if MPI’s accelerance matrix were generated from a FEM, it would still be 
necessary to measure the RWA accelerance matrix. We focus instead on the latter terms, the RWA disturbance CSDs. 

MatlabTM code, originally written to calculate PSDs from RWA disturbance time histories, was modified to also calculate 
CSDs. The coupled disturbance analysis code, originally based on Equations (10)-(12) (or (10) and (13)), was modified to 
use Equation (15) in place of (12), hence including the RWA disturbance CSDs (the off-diagonal terms in Q F F ) .  The 
modified analysis code, however, still uses the scalar force and moment filters in (10) and (1 1) (compiled into a 6 x 6 
diagonal matrix, Gf), instead of the fully populated force filter matrix, GJ, in (14), since RWA and MPI accelerance 
matrices are not available. 

To isolate the effect of the disturbance CSDs (without accounting for coupling), a decoupled analysis including CSDs was 
performed using (15) by setting the force filter matrix, Gf, equal to the 6 x 6 identity matrix (equivalent to using the 
unfiltered matrix expression in (2)). The resulting OPD prediction is shown in Fig. 24, along with the measured OPD and 
the decoupled prediction using only PSD terms. Fig. 24 demonstrates that including the disturbance CSDs improves the 
decoupled OPD prediction in some regions (particularly near 3450-3550 RPM), yet degrades the prediction in other 
regions, such as near 2600 RF’M.’ Since this is a decoupled prediction, and the improvement is due simply to the addition 
of disturbance CSDs, it is recommended in future analyses, whether decoupled or coupled, to include RWA disturbance 
CSDs in the analysis equations. 

5. CONCLUSIONS 
Experimental validation on the MPI testbed indicates that both the decoupled and coupled hsturbance analysis methods 
presented in this paper provide sufficient accuracy compared to measured performances. However, the coupled analysis 
method provides improved results when the gyroscopic nature of the spinning RWA is captured in the RWA accelerance 
model, especially in certain wheel-speed ranges where MPI-RWA coupling is influential. Hence inclusion of RWA gyro- 
scopic effects is recommended in a coupled spacecraft-RWA disturbance analysis. 

A similar study, however, has shown that CSD terms cause a signzfzcant improvement for the isolated-RWA configuration on MPI. 



Additionally, the inclusion of RWA disturbance CSDs in Sec. 4 improves the OPD predxtion significantly in certain 
regions, despite adversely affecting the prediction in other localized regions. Because of their influence, RWA distur- 
bance CSDs should be retained in future disturbance analyses. 
Finally, an investigation of the influence of the fully populated RWA and MPI accelerance matrices (and thus the fil- 
ter matrix in Equation (14)) should be performed in the future; the off-diagonal terms neglected in the gyroscopic filter 
analysis in Sec. 3.4 should also be incorporated. 
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